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Conversion of 1-Boc-indoles to 1-Boc-oxindoles
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Abstract—A facile synthesis of substituted oxindoles 2 from the corresponding indole is described. The reaction, which proceeds
through the 2-(indolyl) borate intermediate, is general and applicable to several indoles.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1.
The oxindole ring is found in many natural products1

and pharmaceutically active compounds.2 While many
methods exist for the construction of oxindoles from
nonindole precursors,3 fewer options exist for the
conversion of indoles into the corresponding oxindoles.
Methods for the oxidation of substituted indoles to yield
their respective oxindoles are often multi-step proce-
dures,4 or involve an aqueous enzymatic system,5 since
straightforward oxidation of indole generally takes
place at the electron rich 3-position.6 Sometimes these
methods require hydrogenation7,8 to yield the desired
oxindole. Recently we reported on an improved process
to convert N-Boc protected indoles into 2-(indolyl)
borates9 and here we describe an extension of that chem-
istry to give substituted oxindoles in good yields.

Ozone� has been used to oxidize boronic acid and bo-
ronic esters to their corresponding alcohols.10 A number
of commercially available indoles were N-Boc protected
under standard conditions (Scheme 1). The resulting N-
Boc indoles were taken forward without further purifi-
cation to yield the desired boronic acids after hydrolysis
of the isopropylborate esters.6 These acids were then
oxidized to the desired oxindoles.11 It is worth noting
that the procedures were not optimized but consistently
good yields were obtained. Additionally, protection of
the 3-position on the indole was not necessary, which al-
lowed for the two reactions to be simply run in one pot.

In conclusion, we have demonstrated a convenient and
efficient protocol for the synthesis of substituted oxin-
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doles. The method provides a convenient and rapid
one-pot transformation of Boc-indoles to Boc-oxindoles
employing an environmentally friendly oxidation.
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